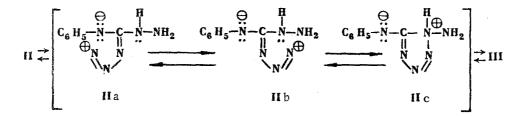

THERMAL ISOMERIZATION OF 1-PHENYL-5-HYDRAZINOTETRAZOLE

V. L. Nirenburg and I. Ya. Postovskii

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 1, No. 6, pp. 946-947, 1965


A new example of isomerization of a tetrazole derivative (1-phenyl-5-hydrazinotetrazole to 1-amino-5anilinotetrazole) is described. A convenient method for preparing 1-phenyl-5-hydrazinotetrazole is described.

1-Pheny1-5-hydrazinotetrazole (II) was previously prepared [1] by reacting 1-pheny1-5-bromotetrazole with hydrazine hydrate. The hydrazine II (mp 140°) was here prepared by heating 1-pheny1-5-methylsulfonyltetrazole [2] with hydrazine hydrate for a short time, and the yield was almost quantitative. Prolonged refluxing of the sulfone I with hydrazine hydrate gives a crystalline substance mp 210°, which, according to its elementary analysis, is isomeric with the starting II. The same substance was obtained by boiling II in high-boiling solvents (xylene, morpholine, benzylamine). Taking into account data on the thermal isomerization of 1-pheny1-5-aminotetrazole to 5-anilinotetrazole [3], it could be assumed that under the experimental conditions 1-pheny1-5-hydrazinotetrazole underwent isomerization to 1-amino-5-anilinotetrazole (III)

This assumption was confirmed by comparing the isomerization product with the compound III of known structure, prepared by Stoll's method from 4-phenylthiosemicarbazide.

The mechanism of the reaction can be represented as follows: heterolytic splitting of the N²-N¹ bond takes place on heating, with formation of an intermediate guanilazide (IIa \ddagger IIb), which recloses to the tetrazole at the nitrogen of the hydrazine group (IIc \ddagger III)

Obviously isomerization of hydrazine II to III is an equilibrium process, with a large shift of the equilibrium towards the side of the thermodynamically more stable amine III.

Experimental

<u>Hydrazinolysis of 1-phenyl-5-methylsulfonyltetrazole.</u> A mixture of 18.8 g (0.084 mole) sulfone I and 32 ml hydrazine hydrate was refluxed for 2-3 min. On cooling a precipitate of the hydrazine II separated, yield 14 g (95%), mp 136-137°, recrystallized from water mp 140-141° (the literature [1] gives 125°). Found: N 47.72%. Calculated for $C_{7H_8N_6}$: N 47.72%.

Isomerization of 1-phenyl-5-hydrazinotetrazole. 0.44 g (2.5 mmole) 1-phenyl-5-hydrazinotetrazole was refluxed in 35 ml xylene. On heating the hydrazine II first went into solution, and after 2-3 min a crystalline precipitate started to form. After cooling the mixture was filtered, and the solid washed with ether. Yield 0.4 g (91%), after recrystallizing from ethanol mp 210° (the literature [4] gives 210°). Found: C 47.76; H 4.75; N 48.31%. Calculated for $C_7H_8N_6$: C 47.72; H 4.56; N 47.72%.

REFERENCES

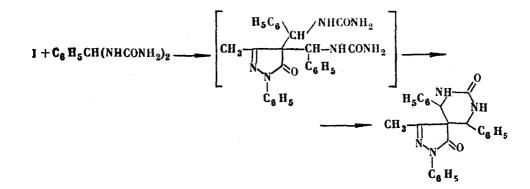
1. R. Stolle, K. Ehrmann, D. Rieder, H. Wille, H. Winter, and F. Henke-Stark, J. pr. Chem., 134, 282, 1932.

- 2. R. Stolle and F. Henke-Stark, J. pr. Chem., 124, 261, 1930.
- 3. R. Henry, W. Finnegan, and E. Lieber, J. Am. Chem. Soc., 77, 2264, 1955.
- 4. R. Stolle and E. Gaertner, J. pr. Chem., 132, 209, 1931.

13 April 1964

Kirov Urals Polytechnic Institute, Sverdlovsk

LETTERS TO THE EDITOR


UDC 547.855

SUBSTITUTED SPIRO [PYRAZOLO-4, 5'-PYRIMIDINES]

V. P. Mamaev and M. A. Mikhaleva

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 1, No. 6, p. 948, 1965

Continuing work on the reaction of arylidenebisureas with compounds containing the CH₂CO group, for the purpose of preparing pyrimidine derivatives [1], the reaction of benzalbisurea with 1-phenyl-3-methylpyrazolone-5 (I) has been investigated by the present authors. 1 mole I and 2 mole benzalbisurea in dry n-butanol (in the presence of HCl) at 100° gave an approximately 50% yield of a compound mp 237-239°. Its UV spectrum was similar to that of I; it was insoluble in alkalies, did not give a coloration with either ferric chloride or p-dimethylaminobenzaldehyde. When boiled with 10% NaOH the smell of benzaldehyde appears, and I and urea are found in solution (paper chromatography). The IR spectrum of the compound (in KBr) has an absorption band at 1680 cm⁻¹, which can be ascribed to vibrations of the CO group in urea, and an absorption band at 1703 cm⁻¹, characteristic of the CO group of 4, 4-disubstituted pyrazolones-5 [2]. The elementary analysis corresponds to a formula $C_{25}H_{22}N_4O_2$. From these results it can be inferred that the compound is 1, 4', 6'-triphenyl-3-methylspiro [pyrazolo-4, 5'-hexahydropyrimidine]-5, 2'-dione, and is a member of a new heterocyclic system. Its formation can be represented by the following equation:

Similarly, reaction of I with anisalbisurea gave 1-phenyl-4', 6'-bis(p-methoxyphenyl)-3-methylspiro [pyrazolo-4, 5' - hexahydropyrimidine]-5, 2'-dione, mp 200-204°.

REFERENCES

- 1. V. P. Mamaev and V. F. Sedova, ZhOKh, collected papers, Biologically Active Substances, 32, 1965.
- 2. A. R. Katritzky, Advances in Heterocyclic Chemistry, Acad. Press, N. Y.-London, 2, 38, 1963.

14 March 1965

Novosibirsk Institute of Organic Chemistry, Siberian Division AS USSR